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The theory of Van Hove for nonequilibrium quantum statistical mechanics 
is extensively reformulated in terms of a superspace (a kind of operator 
space). This reformulation enables us to introduce a diagrammatic method 
which makes it convenient to deal with practical problems in physical 
systems. In our formalism, quantum statistical effects are considered on 
the basis of a systematic rule for the contraction technique. A complicated 
statistical effect in boson or fermion systems can be treated by starting with 
a simple unsymmetrized formalism in the Boltzmann statistics. 
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1. I N T R O D U C T I O N  

Since the  general ized master  equa t ion  was first der ived by Van Hove,  ~1~ 
r emarkab le  progress  has been made  in the s tudy of  i r revers ible  processes in 
nonequ i l ib r ium stat ist ical  mechanics.  Much  of  this progress  has been 
achieved by  the Brussels school led by  Prigogine,  (2-1~ on the basis o f  the  
one-resolvent  me thod  and  a simple d i ag rammat i c  representa t ion.  However ,  
only  some work  on the two-resolvent  me thod  for  Van Hove ' s  or iginal  theory  
has been  done.  (11-13~ One o f  the rriain reasons  for  such slow progress  in the 
two-resolvent  me thod  is tha t  the pe r tu rba t ion  series o f  this theory  has a 
much  more  compl ica ted  s t ructure  than  does tha t  o f  the one-resolvent  method,  
and  i t  does  not  have as s imple a d i ag rammat i c  represen ta t ion  as does the  
one-resolvent  method .  
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The first aim of the present work is to enhance the usefulness of the two- 
resolvent method by introducing a diagrammatic representation that gives 
for the perturbation series of this theory a parallel form to that for the one- 
resolvent method. Our idea involves the use of a superspace, which was 
introduced in our previous work. ~13~ According to the reformulation of this 
theory in the superspace, a diagrammatic representation called the product 
representation can be introduced. By using this representation, we can 
express the perturbation series in a form separated into four fundamental 
components: a creation part, a diagonal part, a destruction part, and a part 
representing the propagation of correlations, as in the one-resolvent 
method. ~3~ This product representation is further developed into an ordered 
product representation, which offers a very simple relationship between the 
asymptotic time dependence of each term in the perturbation series and the 
topological structure of the corresponding diagram. The collision kernel of 
the asymptotic kinetic equation can be systematically constructed from a 
compensative relation based on the conservation law of the probability. 

The second aim of this work is to give a new treatment of quantum 
statistical effects in the asymptotic time evolution of a system on the basis of a 
systematic rule for the moving contraction technique, ~14~ and to show how the 
two-resolvent method is suitable for dealing with these complicated statistical 
effects. In our formalism, these effects are treated by noticing that some of 
the Fourier components of the Wigner distribution function are contracted 
to lower components through the symmetric properties of the wave function. 
In order to represent these effects of the contraction in a visualizable form, 
our diagrammatic method is further extended. We find that quantum 
statistical effects can be classified into two groups: internal ones among the 
particles in a collision, and external ones between a particle in a collision and 
a background particle. Consequently, by starting with a simple diagram in 
the Boltzmann statistics, we can include quantum statistical effects in our 
formalism merely by putting the two effects of the contraction into the 
original diagram. 

We find that the collision kernels of the quantum statistical kinetic 
equations for various systems (examples treated are of a homogeneous 
system and of a linearized hydrodynamic system) can be easily obtained on 
the basis of the perturbation theory of the two-resolvent method. 

2.  F O R M A L I S M  

2 .1 .  I n t r o d u c t i o n  

As  usual, w e  consider N identical particles with the Hami l tonian  

H = Ho + AV = + A V(lr, - rjl) 
t<1 

(2.1) 
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in a cube of volume (2rr)3f~ with periodic boundary conditions, and introduce 
the unsymmetrized N-particle eigenstate of H0, IpN), belonging to the 
eigenvalue EpN -- ~ p~2/2m, by 

Holp N) = Ep~Ip N) (2.2) 

which forms a complete orthonormal basis of  the ordinary Hilbert space .~, 
i.e., 

N 

(PNlP'N) = 1--I 3K(p, _ p() (2.3) 
g = l  

IpN)(pN[ = 1 (2.4) 
p N 

Here, ~K(p) is the Kronecker symbol and the abbreviated notations pN _ 
(Pl ..... pu) and ~p~ --- ~pl "'" ~p~ are used. The matrix element of the potential 
is given by 

N 

<pN[ V[p,N) = ~2-~ ~ ~ v(q) $~(p, -- p,' + hq) ~X(pj - p /  - hq) 
i<Y q 

N 

x I-~ 3~(P~ - P/) (2.5) 
l r  

where v(q) is the Fourier transform of V(r), i.e., 

l] 
v(q) = ~ dr V(r)exp(iqr) (2.6) 

We are interested in an asymptotic system in the "thermodynamic 
limit" (T-limit), i.e., 

N--~ 0% f2 --+ oe, N/f~ = (27r)3c = const (2.7) 

where c is the density of the system. In the limit f2--> ~ ,  the Kronecker 
symbol and the summations on momentum and on wave vector are replaced 

- by the Dirac delta function and integral signs, respectively, as 

hal2 3X(p)-+ 3(p), h3f~-I ~ ~ f  a lp ,  ~ q - l ~  __>f dq (2.8) 
D q 

The symmetrized and antisymmetrized N-particle momentum states 
[pN)~ are used as follows; from the basic states of (2.2) we have 

[pN)~ -- (N!)~/25pNlpt ..... PN) (2.9) 

where the symmetrization operator is defined in terms of  the permutation 
operator Q, which replaces p~ by pe~,.., and PN by PQN, by 

5PN = (l/N!) ~ O"QQ (2.10) 
Q 
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Here, the sum on Q runs over the N! permutations. The statistical factor 0 
is equal to 1 for bosons and - 1 for fermions, and n o is the number of inter- 
changes in a permutation Q. We further use the interchange operator Q,j, 
which corresponds to the interchange of p~ and pj. 

We now briefly,explain our superspace ~, which is ~ kind of unitary 
space consisting of linear operators {X, Y,...} in the Hilbert space 5 (see 
Ref. 13 for more details). We denote the elements of the superspace by curly 
ket vectors {] X), I Y),...} and their adjoints by bra vectors {(X], (Y[,...} and 
call them supervectors (s.vectors) or superstates (s.states). The inner product 
between them is defined by 

(X I Y) = tr[X*Y] = (Y*IX*) (2.11) 

where tr means the trace and X + is the adjoint operator of X in.~. We further 
introduce the "ordered superoperator," which is a kind of operator on ~, 
as follows: Corresponding to two operators A and B in .~, the ordered 
s.operator (A /x B) is defined as 

(A A B ) I Y ) =  ]AYB) (2.12) 

for any s.vector I Y). From this definition we get the formula for the product, 

(A A B)(C A D) = (AC A DB) (2.13) 

For brevity, it is convenient to introduce the "one-sided s.operators," which 
are defined by 

A > = ( A / ,  1), 

They satisfy the following relations: 

(AA~)=A>B <=8<A >, (AB) > 

B < = (1 A B) (2.14) 

= A >B>, (AB) < = B  <A < (2.15) 

We further denote a dyad operator, [pN><p,N[ by a s.vector ]pN; p,N), 
which satisfies the eigenvalue equations 

Ho>lpN;p '•) = Ep"[pN;p'N), H0<]pN;p 'N) = Ep,NIpN; p'N ) (2.16) 

and forms a complete orthonormal basic set in ~,  i.e., 

N N 

(pN; p,NIqN ; q'N) = 1--~ 1--I ~K(p~ _ %) , ~ ( p /  _ q / )  (2.17) 
~=i J=l 

~ ]pN; p,N)(.pN; p,~] = 1 (2.18) 
I)N D'N 

A symmetrized dyad operator ]pN> ~ s{p,N I is also denoted by ]pN; p,~)s. 
The density matrix o(t) is expressed by a s.state ]p(t)) in ~ and is governed 

by the yon Neumann equation, 

ih Otlp(t)) -- 5v?lp(t)) (2.19) 



Theory of Irreversible Processes in Nonequilibrium Quantum Systems. I 351 

where the antisymmetrized super-Hamiltonian 3# (the so-called super- 
Liouvillian) is defined by 

3# -- H > - H < (2.20) 

Let us introduce the Wigner distribution function ~3~ 
FN(xl ,..., xu, Pl ,..., PN, t) 

( 2rrh)a N! k• 

x ~ pl + g kl , . . . ,  p~ + g kN; Pl - ~ kl ..... p~ - kNIP(t) (2.21) 

which is a useful tool for treating in a unified way a homogeneous and/or an 
inhomogeneous quantum system. The sets {xl,..., xN} and {p~ ..... p~} are 
variables in the quantum phase space, where x~ is defined as a conjugate 
variable to the relative wave vector k~ of the ith momentum p~ + (h/2)k~ in 
the Fourier transform. 

We assume that the Wigner distribution function is normalized in the 
T-limit as 

f (dx)Nf (dp)N Fu(x N, pU, 0) = 1 (2.22) 

which corresponds to tr p(O) = 1 in.~. 
We further use the reduced distribution functions for a set of a finite 

number of particles, which are defined by 

f A(x~,. . . ,  x~,pl  ..... p~, t) ( U - -  s)!  (dx)N-s (dp)~-~F~(x ~, pN, t) 
(2.23) 

.... , p .  t) = j (dx)Nj (dp) FN(X N, pN, t) 

A reduced description of the system is only meaningful in the case where the 
reduced Wigner functions exist in the T-limit. Then, following Prigogine and 
Balescu, <2> we introduce a Fourier component pk~ . . . . .  k r  for the Wigner function 
FN as 

FN = (87r3f2) N Po(] --.; t) + ~)-~ Pk,(P*]'" ; t) exp(ik~x,) 

N 

+ Y2-2 ~ ~ '  ~ '  [Pk,,k,(P,, P:[... ; t) + Y2 3K(k, + k:) 

Pk, kj(P~, Pj[... ; t)] exp[i(k,x, + kjxj)] + ...~ (2.24) X 
) 
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and thus we get 

Pkz ..... k~(Pl .... , P~]P~+ 1 ,..., P~; t) 

= ~2N + V ~ ( h 3 N N !  ) - 1 

~/ h h h 
• ~Pl + ~ kz ..... Pr + ~ k~, pr +1,..., PN; PZ -- ~ kl , . . . ,  

Pr -- ~ kr, Pr +1 .... , PN[p(t) (2.25) 

where  the pr ime on the summat ion  sign indicates the exclusion of  k = 0, 
and v, is the n u m b e r  of  independent  nonzero  wave vectors  in kl , . . ,  kr.  In  
this componen t ,  the m o m e n t u m  a rgument  on the left side of  the bar  indicates 
the center  o f  m o m e n t a  on the off-diagonal elements  having nonzero  relative 
m o m e n t u m  hk. Fo r  the case of  a homogeneous  system, only the components  
with ~ k~ = 0 give a nonvanishing contr ibut ion for  Fu. The  c o m p o n e n t  
having all zero wave vectors,  p0(pN; t), is simply the m o m e n t u m  distr ibution 
function, i.e., P0 = ~N. I t  is fur ther  assumed that  the following factorizat ion 
proper t ies  of  the Four ier  componen t s  holdS8,4): 

N 

p0(]Pl .... , PN; t) = I - I  ~(P~; t) (2.26) 
t = 1  

Pkz ..... k,(Pl .... , PrlPr + 1, '" ,  PN; t) 

N 

.~) t ,  t) ~ ~I(P,; t) (2.27) = / ~ k l  . . . . .  k rk ] [ l l  , . . . ,  p ; e ;  
i=r+l 

Here,  the reduced Four ier  componen t  is defined by  

(r) ( ,  t )  Pkz  . . . . .  kr~,l ' l  , . . . ,  P r ;  

= (h3~-~)  N-r ~ " " ~ P k l  ..... ~,,(Pl ..... PrlPr+~ ..... PN; t) (2.28) 
Pr+l DN 

and is closely related to the correlat ion funct ion for  the homogeneous  system. 
Thus,  the componen t s  having nonzero  wave vectors are called "cor re la t ion  
componen t s , "  and Po is the " v a c u u m  c o m p o n e n t "  for  the homogeneous  
sys temJ 3) The  concepts  of  correlat ion componen t  and vacuum componen t  for  
inhomogeneous  systems are extended in Sections 5 and 6. 
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2.2 Per turbat ions and Diagrams 

The solution of the yon Neumann equation (2.19) can be expressed by 

]p(t)) = qg(t)]p(0)) (2.29) 

where the time evolution s.operator qg(t) is defined by 

ql(t) = exp(-i~/~t/h) 

= ~ dz ,dz ' {exp[- i (z  - z')t/h]}R>(z)R<(z ') (2.30) 

Here, the resolvent s.operators are defined by R~(z) = (H ~ - z) -1 and the 
paths of integration P and F' are any positive contours enclosing sufficiently 
large portions of the real axes in the complex z and z' planes, respectively 
(hereafter, for the symbols > or <,  the same symbols always have to be 
taken together). 

The resolvents R~(z) satisfy the integral equation 

R x (z) = Ro ~ (z) - ARo <> (z) V <> R <> (z) (2.31) 

with the unperturbed resolvents Ro x (z) = (Ho ~ - z)-z;  its iterated solution 
is 

R~(z) = Ro~(Z) ~ [ -  AV~RoX(z)]" (2.32) 
n = 0  

Combining the above relations with (2.25), we obtain the perturbed 
solution for the Fourier component, 

pk'(pr]pN-r; t) = ~ -  dz dz' e -*(~-~'w~ 

x ~ f2v,-v~ p + , pn-r; 
s=O I<]< . . .  p,N , = n=O 

h <P - ~ k }  ~, pN-rl{Ro(z)[-- hVRo(z)] 'n 

^ [-aRo(Z')V]"Ro(z')}[ p' + gk '  ,p'N-~; 

h ~ < p ' - ~  k ' ) ,  p'N-~)pu, ffp'~]p'~-~; O) (2.33) 
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where (p + �89 r = {Pl + �89 ..... p, + �89 is used, and vr and v, are the 
numbers of independent nonzero wave vectors in pkr and p~,s, respectively. 
The summations on i, j,... are taken over particles appearing in the initial 
Fourier component with nonzero wave vectors, except for particles appearing 
in the final component with nonzero wave vectors [see~ for example, (2.35)]. 
In obtaining (2.33), we have used the symr)aetric property of the potential, 
5aNV = VSeN. Further, we have assumed, for the moment, that all inter- 
mediate states are summed independent of the other state and we have dis- 
regarded the special role of the diagonal transition, which is defined as a 
transition between states having the same momentum. Indeed, for such a 
case, we can see that each intermediate state gives the same contribution to 
the perturbation series irrespective of whether the state is symmetrized or not, 
and all quantum statistical effects may be crowded into the initial Fourier 
component as in (2.33). This neglect, of  course, cannot be admitted in 
treating a large quantum system, and therefore we must recover our formalism 
later. However, in order to make our theory clear, here and in the next 
section we proceed by disregarding this effect, and we devote our attention 
only to the evolution part of (2.33). The details of how the quantum statistical 
effect is included in our theory are given in Section 4. 

Let us introduce a diagram technique to analyze the behavior of this 
evolution part. In our diagram the tetradic element of an ordered s.operator 

(pN; p'Ze[( A A B)lq~'; q,N) = <PNIAIq~><q,NIBIp,N > (2.34) 

is represented by 

(pNI-4[qN)[(q'NlB]p'N> 

where a vertical line between the matrix elements represents the symbol /~ at 
the corresponding location in the tetradic element and is called the A line. 
In the matrix elements, a momentum state for each particle is represented by 
a horizontal line to each side of the A line (see Fig. 1). On each line, the 
momentum and/or the name of the particle are put, if necessary. A potential 
is represented by a wavy vertical line and we put the momentum transfer on 
this line. In our diagram, a s.state is represented by a pair of states at either 
side of the A line, and a pair further from the A line corresponds to a s.-state 
further to the left in the term. To distinguish the vacuum part in the final 
s.state from its correlation part in which the particles have nonzero wave 
vectors, we draw nothing for particles having no wave vectors in the final 
s.state, and also for particles that appear in the intermediate or the initial 
s.state having the same momentum as the final ones (see Figs. 1 and 2a). 
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But, if necessary, we draw dotted horizontal lines for them, and call them 
vacuum lines. For instance, the contribution 

pkl(pz[pN-1 ; t) 

- - 1  2 N 

h ,  N-1. h 
x p~ + ~K~ ,p  ,p~ - ~k~,  p~ ' -~ l [Ro(z )VRo(Z)  A Ro(Z')rRo(Z')] 

h p,N-2; h ) 
• ]P~ + ~ kl + hq, p~, Pl - ~ kl ,  p, + hq, p,W-2 

( h h p,N-a; ) 
X Pk1+q.-q Pl "k ~q,p~ + ~q[pj - hq, 0 

- 1  2 dz' e-~(~- ~')t/~(-,~)~f2 -1 f2 -2 = ~ d z  , ~<J 

1 v(q)  ~, 1 
X E p z + ( l / 2 ) ~ k l , p ~ , p  j - -  Z L , p l + ( l / 2 ) f ,  k l _ ~ , q , D ~ , p j _ f ~  q - -  Z 

1 1 
• E,~_(~/~. . ,+~. , , ,_~.  - z '  v ( q )  E . ~ _ ( ~ / ~ . , , , . . ,  - z '  

x Plq+q,-q Pl + ~q,P~ + ~q[Pj - hq, pN-3; 0 (2.35) 

is represented by the diagram shown in Fig. 1, and here we use an abbreviated 
notation for energies in which irrelevant arguments pN-3 are omitted for 
simplicity. In the diagram the symbol II on the initial particle line indicates 
that it is not diagonal at the time t = 0 and has nonzero wave vector corre- 

~  . . . . . . . . .  �9 * ~ [ 

~ �9 ~ , ~ 1 7 6  ~ ~ 

Fig. 1. Diagram corresponding to (2.35). We use units with h = 1 in the diagram. 
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sponding to the initial correlation. These lines are called initially "excited" 
lines. 

3. T I M E  E V O L U T I O N  A N D  O R D E R E D  
P R O D U C T  R E P R E S E N T A T I O N  

3.1. T ime  Dependence  

We now develop our diagrammatic technique in order to discuss the 
time dependence of the perturbation series for a homogeneous system based 
on a classification of characteristic times, the relaxation time tr and the 
collision time to, under the condition tr >> to. Our development is achieved in 
two steps: the first is the "product  representation" (p.representation) and the 
second is the "ordered product representation" (o.p.representation). 

To explain the p. representation, we first reformulate the perturbation 
series into four fundamental components: a destruction part, a diagonal part, 
a creation part, and a propagation-of-correlations part. This reformulation 
was done in Ref. 13 and the resultant expressions are 

(=; filR>(z)R<(z')b,; 3) = (~; fiI{[~ + ~ ( z ,  z')~lR>(z)R<(z ') 
x [~  + ~N(z,  z')g] + ~J (z ,  z').~}b,; 3) (3.1) 

with the diagonal part 

(~; ,~l~R" (z)R<(z')~l~; ~) 

= (a;a ~=oD>(z)D<(z')['#/'(z,z')D>(z)D<(z')l~lg;fl) (3.2) 

Here, Greek letters are used to express the eigenstates of the unperturbed 
Hamiltonian H0 in-9 for simplicity and the projection s.operators ~ and 
defined by 

= ~ la; ~)(a; c~[, .~ = 1 - ~ (3.3) 
(Z 

are used. They satisfy the relations 

~2 = ~, ~ = ~ = 0, .~2 = .~ (3.4) 

The irreducible s.operators are introduced as follows; the diagonal fragment 
is defined by 

"g/'(z, z') = ~{N > (z)N < (z')}t.u~ (3.5) 

the creation part by 

~Cg(z, z ' )~  = ..~[D>(z)N>(z) + D<(z')N <(z ') 
+ D > (z)D < (z'){N > (z)Y < (z')}t,ti]~ (3.6) 
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the destruction part by 

~ ( z ,  z').~ = ~[N>(z)D>(z) + N>(z')D >(z') 

+ {U>(z)U<(z')}t.tlD>(z)D<(z')]~. (3.7) 

and the propagation-of-correlations part by 

..~J(z, z')~ = .~D>(z)D~(z')[1 + U>(z)D>(z) + N<(z')D<(z ') 

+ {N > (z)N < (z')}t.tlD > (z)D < (z')].~ (3.8) 

In these definitions 

(,zID(z)lfi) = D,~(z) 3~,B = c~ Ro(z)[G(z)Ro(z)]' c~ ~.~ (3.9) 
. =  

@]G(z)] f i )=G.(z )3 .K,B=~cZ{~o--AV[--ARo(z)VJ ' )o . t icz )3 ' ,e (3 .10)  

(alN(z)lfi) = N.B(z)(1 - 3~,e) 

= (,~ {,~o- ;~v[-;t.o(Z)V]~}o,il~)(1- 3~.~) (3.11) 

and 

(c~; fi]{N >(z)N<(z')}t.ul~; 8) 

= ~'  {,~o- AV[-A"o(Z)V]q,) 
x ~3 ,~=o-AV[-A,o(Z)V]'}~.~ , ) ( 1  - 3~.,)(1 - 3~,0) (3.12) 

Here, the subscript o.ti stands for "one-sided topologically irreducible," 
which implies that the intermediate states should never be identical to the 
initial and final states ]a) and 1/3), while t.ti stands for "two-sided topo- 
logically irreducible," which implies that the intermediate states on opposite 
sides of the operator IV)(3[ should never be identical to each other or to 
]a), [/3), [~,), and 13)? 

The p. representation is devised so as to represent directly the above 
classification by diagrams. This representation is defined such that a product 
of  diagrams is expressed in accordance with the product of the s.operators 
(2.13) as 

AC]DB = A]B , CID (3.13) 

Namely, when we decompose a diagram into the product, we put the inner- 
most fragment of  the original diagram onto the rightmost side. Further, we 
require that each fragment in this product is represented by the same rule as 

a We note that in Ref. 13 the s.operators G <> (z), N~ (z), and {N>(z)N < (z')h~ were defined 
through the diagonal s.operator D~(z) instead of Ro~(Z). This is why we use the 
concept of "topologically irreducible" rather than "irreducible" in this paper. 
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Fig. 3. Diagram representing the propaga- 
tion-of-correlations. 

/ 

2 

3~ 

13 ~ S 
I ~- 

for the original diagram; that is, we draw nothing for particles having no wave 
vectors in the final s.state of these fragments, and so on. An example is shown 
in Fig. 2, where the reducible diagram (a) is decomposed into the diagram 
(b). Under such a decomposition the fragments G(z) and ~tK(z, z ')  in the 
diagonal part can be separately represented in a simple form. We call the 
fragments G and #~ the "one-sided diagonal fragment" (o.s. diagonal frag- 
ment) and the "two-sided diagonal fragment" (t.s. diagonal fragment), 
respectively. We further use the terminology "diagonal s.state" or "vacuum 
s.state" in order to indicate the s.state having the same momentum states on 
opposite sides of the A line, such as ]a; a). For the propagation-of-correla- 
tions part we do not need to decompose into a product form. An example of 
this part is shown in Fig. 3. 

As a result of this p. representation, the reconstructed perturbation series 
(3.1) can be represented in a visualizable form, and the diagonal part, which 
gives the main contribution in the asymptotic situation t >> to, is detached 
from the other parts. 

Let us now illustrate with the simple example of the diagonal part in 
Fig. 4 that this main contribution is given through the pole at l = z - z'  = O. 
The corresponding expression for t > 0 is 

p0(l~';t)l~~ ~2~i /  J-oo d E  d l e  -role = E~ o - E - �89 G?](E + �89 

l 1 
G(2~r �89 

• E~ - E - �89 - E + �89 ~ "  

1 I 
x E~I, _ E +  �89 G p } ' ( E -  �89 o, - E +  �89176 (3.14) 

where ~i = ~/ = =, and G~)(z) = A2@]{VRo(z)V}o.tl[@ is the lowest order 
term of ,X in G~(z) in (3.10), and we have changed the integration variables z 

d0 

Fig. 4. Diagram corresponding to (3.14). 

=; 
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and z' to E and l. The path of the 7 is parallel to the real axis on the upper 
half-plane of the complex I plane and goes to -oo from +oo. The integrand 
in (3.14) has poles at I = 0 which come from the product of the propagators 
corresponding to the diagonal s.state, ( E ~ -  E -  51) -2(E~-  E + �89 -3. 
These poles can be systematically exposed by the following procedure: We 
first decompose the factors on both sides of (3.14), (E~0 - E - 50 -1 and 
(E~o,-  E + 50 -1, into partial fractions. Then, we have the reduction 
formula 

1 1 1 1 ~(2) ~(2) 
51 ~a2' E~ o - E - 5t ~ E~ - E - 5t E~. - E + E~< E + 5t 

1 
x r 

~"~ '  E~ o, - E + 51 

1 ~(2> I 1 ~(2) 1 1 
=rye1 "_e~o_ e _ 5 t v ~ l  e ~ _  E_51E~l ,_  E + 5t 

x G (2> 1 1 1 1 
~2' E . I ,  - E + 51 + -f ( -  G~)~) E~ - E - 5 l  E~ 2, - E + 51 

x ~(2> 1 ~(2> 1 ] 
v~2" E .  c _ E + 5l -"~' E .  o, - e + 51.  (3.15) 

In the brackets in (3.15), we again decompose the factors on both sides into 
partial fractions. Continuing this procedure, we find the reduction of (3.14) 
a s  

f 
po([a; t ) ] :  = \2rri] J..= dE j~ dle-"t,n 

{[~ 1 ~(2) 1 -(2) 1 1 c(2> 1 c,s), 1 -,2) 1 

1c:>1 _(~> I <_c:>, ~I I 
+ -f-~','Tu",'l " ~ ' , "  E~, e 5l + [ '"](-1)E~, ,  1 - - - E + 5 1  

-~"T ~""  E. o - - 5l ~" '  E. ,  - E - 51 

[1 1 G~I), 1 1 _<2>1 / ]  
+ (-GT>)-[ T+T(~,,,T(-GT}) ( - 1 )  

, , 11 x E,,~, - E + 51 ~"" E.=. - E + 51 + (- GT~)) (- I) 

1 ~(2), 1 G(2) 1 
x E.o, _ E + 5l ~ '  E~,, - E + 5l ~'' ~E~,, - E + 5l.P~ 0) 

(3.16) 
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The integrands in (3.16) have analytical continuations in the lower half-plane 
in l and the poles at ! = 0 are sufficiently isolated for the case of  short-range 
interactions. Thus, it is enough to consider the contributions of  the poles at 
l = 0 for t >> to, and we get, for example, for the first term in (3.16), 

p0([~; t)la%~. 

~+| a 1 { - i t ~  a-~ g~ 

' - 3 1 ) a f ) ( e  x [ - G ~ ) ( E  + ~I )G. I . (E - 3l) + ""1 

1 [ po(]a; 0) (3.17) 
x E ~ - E - 3 1 1 = + ~ 0  

As shown by this example, the diagonal part gives the contribution that 
grows with time. Therefore, our separation of  the diagram with the aid of  the 
p. representation is useful for treating the asymptotic time behavior of  the 
system. However, in this representation there is no unique correspondence 
between the number diagonal fragments and the orders of  the poles at l = 0. 
So, in order to derive the generalized master equation through our diagram- 
matic method, some improvements are needed in the p. representation. We 
note that this disaccord is caused by the existence of an ambiguity in the order 
with regard to time between an o.s. diagonal fragment on the left-hand side 
and one on the right-hand side of  the A line. Therefore, if these fragments are 
further rearranged in the p. representation by imposing an order between 
them, the disaccord can be resolved. This is the second step of our develop- 
ment and is achieved in the following subsection by introducing the ordered 
product representation. 

3.2. Ordered Product  Representat ion 

We now explain the o.p. representation by using the same example. For 
this purpose, let us first note the order of the diagonal fragments in the 
reduction in (3.16). There, the arrangement of  these fragments has been 
achieved in a regular form: In the first two brackets in (3.16), there appear all 
terms corresponding to the permutations between the fragments - G  ~2) and CC~ 

G~2) which are on opposite sides of the A line (no permutations among the cQ", 

fragments on the same side of the A line appear, since there is already a 
definite order among them in the original diagram). There are other terms in 
(3.16) where some of  the innermost fragments are incorporated into the 
propagators, such as (E~ o - E - 3l) -l~(2)v~ 1 (E~I - E - 3l) -1, or 

11a-lc:.~2~tp - E + 3l)-1, rather than being arranged in an -(E~I, - E + > :  , ~ 2 , ~ 2 ,  
order similar to the above one, and they no longer play the role of a diagonal 
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fragment contributing to the asymptotic time evolution, since they do not 
have the factor l-1. These "inactivated" diagonal fragments yield part of the 
renormalized propagator in the perturbation theory. 

In the more general situation, the rule with regard to this reduction also 
holds for an arbitrary number of o.s. diagonal fragments in a diagonal s.state. 
The details of the reduction are given in Appendix A. 

The rule for the o.p. representation is as follows: The one-sided diagonal 
fragments in the same diagonal s.state are arranged in accordance with the 
order in (3.16) or (A2) as shown in Fig. 5. The symbol > (<)  on a fragment 
indicates that this fragment is located at the left- (right-) hand side of the A 
line in the original diagram. The dotted fragments are renormalized into the 
propagator and are inactivated in the time evolution. The symbols i > and i < 
represent the propagators (E~ - E - �89 and - (E~ - E + �89 respec- 
tively. Then, by using the o.p. representation, we can further decompose the 
diagram in Fig. 2b as shown in Fig. 6. 

We remark here that if the reduction formula (A3) is used instead of 
(A2) for the decomposition of the original term, another o.p. representation 
is possible. In this case, however, the dotted fragment or i ~ is located on the 
left-hand side in each diagonal s.state, in contrast with the above-mentioned 
o.p. representation. An example is shown in Fig. 7. 

As a consequence of our diagrammatic method, we can state a very simple 
theorem concerning to the relationship between the number of diagonal 
fragments and the order of a pole at l = 0 in the o.p. representation: 

T h e o r e m .  Any diagram consisting of m diagonal fragments except for 
the dotted fragments has a pole of (m + 1)th order at l = 0. 

A simple application of this theorem is shown in Fig. 8, where all 
diagonal parts having simple poles at I = 0 are summed. The terms for these 
diagrams are expressed with the renormalized propagators D=(E +_ �89 as 

1 1 

1{~ 1 [ ( 1 )  1 1 ~ 
~=0  

j=oE _ E + �89 G~ E -  -~ l E ~ -  E + �89 

' 1 ] 
= T E ~  - E - �89 - 6 . ( e  + �89 - e ~  - E + � 8 9  6 ~ ( E  - �89 

(3.18) 

In a similar way, we can obtain simple expressions for the summation 
of all diagonal parts as shown in Fig. 9, where Fig. 9a is obtained from the 
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reduction formula (A2) and Fig. 9b is from (A3). The corresponding terms 
are expressed by the s.operators as 

(~,; ,~I~R>(E + ~I)R<(E - ~/)~l~; fl) 

= (c~;~ I -[x~(1)  ?-2~(I)1/~;/3) (3.19a) 

= (c~; ~12~(l) l- 2E(l)  7- I~;/3) (3.19b) 
n=O 

where 

AE(I ) = ~ [ D > ( E  + �89 - D < ( E  - �89 (3.20) 

fqE(1) = ~ [G>(E  + �89 - G < ( E  - �89 (3.21) 

x~( l )  = A E ( l ) Y f ( E  + 1l,  E - �89 - fY~(l) (3.22) 

2~(1) = ~(/~(E + �89 E - �89  -- fr (3.23) 

The generalized master equation can be easily obtained by using the 
expressions in (3.19). For this purpose we first introduce a partial distribution 
function of momenta  defined by 

p0,E(]pN; t) -- ~ ~. 
m=O D'N 

• (pN; pN]X m(/)A~(/)]p,N ; p,n)[po(]pN; 0) 
N N 

+ p' l (e + E - 
s = l  t < t < ' "  <s p,,N k,,s 

• p" + ~k" n "N-s" p"- , r  , ~ , , j ' , p  JPk,,~p jp , 0 ) ]  

(3.24) 
For t > 0, the relation 

po([pN; t )  = f_~= d E  p0,E(IpN; t) (3.25) 

holds. By differentiating (3.24) with respect to t and by using the convolution 
theorem for the Laplace transform, we obtain the generalized master equation 
a s  

/h Otp0,E(lpn; t) = hE(pN; t) 

2~ t "t 
+ - -  d1" L ~ (pN; plVlXE,(.r)lp,N; p 'N)po .E( lp ,N; t  __ 7") h p - ,  

(3.26) 
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where 

h~(pN; t) = ~-i  p~12XE(1)lpN;pN) 

I 
N N r N 

s=l i<]< ""%8 D'N k's 

h ~ h x I(p'+ ~k'},pN-~;  {p,N__ ~k,},pN-S)pk,,(p'S[p'N-s;o)] 

(3.27) 
and 

(pN; PNlxE,(t)lp,N; p,N) 

= ~ dl ,pNIxE(/)lp'N;p'~) (3.28) 

The s.operators X and 2 are called "collision s.operators" of the generalized 
master equation and are identical to (3.40) and (3.41) of Ref. 13. The 
s.operators A ~  and ~r are the "gain parts" of the collision s.operators and 
f# is the "loss part." We further note that if only the poles at l = 0 are 
evaluated in (3.24), the asymptotic generalized master equation is obtained as 

ih ~tp0,E(]pU; t) 

2rr at ~, (pN;PUlxi(,)lp'N;p'N)p0,E(lp'N;t ~) (3.29) 
h p 'N  

This equation is consistent with the equation for the asymptotic evolution 
s.operator Z~+~(t) in (4.22) of Ref. 13. Equation (3.29) is derived in Appen- 
dix B. 

3.3. Construction of the Collision S.operator and the 
Compensative Relation 

We now refer to a useful relationship among diagrams which plays an 
essential role throughout our work on quantum statistical systems. In our 
diagrammatic method it seems that the t.s. fragment has a complicated 
structure as compared with the o.s. fragment. However, if we take note of a 
compensative relation between these fragments which ensures that the 
conservation law of the probability holds, i.e., 

1 = ~ (p~; pNlp(0)) = ~ (p~; p~'lq,'(t)lp(O)) (3.30) 
pN pN 

then we can unravel the complicated structure of the t.s. fragment through 
the study of the simple o.s. fragment. 
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To illustrate this, let us consider how the conservation law can hold in 
our perturbation theory. From (3.30) we see that in order to ensure that this 
law holds, there must be a cancellation among diagrams having the same 
initial and the same intermediate states with the same order of ,~. These 
cancelating diagrams are called "compensative diagrams" and can be found 
by the following systematic rule: We first draw any o.s. diagram, such as the 
example in Fig. 10a. Next, the leftmost potential, together with the states 
on either side of it, is transferred to the furthermost opposite side, as in the 
diagram of Fig. 10b. The third diagram, Fig. 10c, is similarly obtained from 
the second by transferring the leftmost potential, and the successive transfers 
are continued until we obtain the diagram of Fig. 10f, in which all potentials 
are on the right-hand side of the A line. Then, we get all compensative dia- 
grams from the original one. The cancellation of these diagrams can be seen 
in the following manner: In each term, decomposing only the outermost 
product of the propagator, such as (E, - E - �89 I(E~ - E + �89 z in Fig. 
10a, into partial fractions, then we find that all terms cancel except for some 
parts of the partial fractions in Figs. 10a and 10f. Further, the uncanceled 
parts vanish themselves by the integration over E, since all their poles for E 
are located on the same side of the real axis. 4 Hence, we can confirm that due 
to the compensative relation, all terms except for the zeroth-order term in 
cancel under summations of  all momenta and (3.30) holds. 

Let us see the utility of the compensative relation in the construction of  
the collision s.operator. Since the compensative relation holds irrespective of 
l, the terms having the same order of l -  ~ in the compensative diagrams must 
cancel each other. Thus, in the o.p. representation, the diagrams in a collision 
s.operator must cancel. For  example, the diagrams in Fig. 11, which are 
obtained from Fig. 10 as those proportional to 1-2, cancel each other. 

On the other hand, if a reduced function is of interest, and, for example, 
if the momentum of the particle 1 in Fig. 11 is not summed as a fixed particle 
appearing in the reduced function, the compensative diagrams in the first 
and second brackets can survive into the gain and loss parts of the collision 
s.operator, respectively. Thus, our formalism leads to the ordinary type of  
collision kernel in the asymptotic equation, in which the gain and the loss 
parts are separately represented in a compensative form. This result is in 
contrast with the one obtained from the one-resolvent method, (3) where these 
parts are merged into a single collision kernel. 

In applying this rule to constructing the collision s.operator, it is worth- 
while noting that if we start with the o.s. diagonal fragment having an inter- 
mediate diagonal transition (this type of transition is called a "bubb le"  or 

4 We remark that if the integration over E is not performed, these parts contribute to the 
inhomogeneous term hE(t) of the generalized master equation (3.26). 
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"self-energy"), then in the t.s. diagram there appears an additional diagonal 
fragment corresponding to this bubble (see Fig. 10). Therefore, when we 
gather the compensative diagrams having the same order of l-1 in the o.p. 
representation, the original o.s. fragment having the bubble must be always 
paired with the t.s. fragment having the inactivated diagonal fragment 
corresponding to the bubble as shown in Fig. l l .  On the other hand, the o.s. 
diagonal fragment having no bubble never yields any additional one in the 
t.s. diagram, and moreover, these o.s. and t.s. fragments have the form of 
the same topological type of diagram irrespective of the location of their A 
line. These types of fragments ("skeleton fragments") constitute the basic 
elements in our diagrammatic method, because any diagram can be built up 
merely by putting the bubbles on the propagators in these skeleton fragments. 
Moreover, this procedure is expressed by replacing the free propagators with 
the renormalized propagators D~ of (3.9). 

The peculiar structure of a diagram having a bubble or inactivated 
diagonal fragment as compared with the skeleton fragment is that the former 
always has a singularity of higher order than the free propagator. This 
implies that this fragment may contribute to the time evolution only in such a 
situation that the collision time tc cannot be neglected as compared with the 
relaxation time. Therefore, when we treat a system in which tc may be con- 
sidered as being instantaneous, it is enough to concern ourselves only with 
the skeleton fragments. This fact also supports the notion that the skeleton 
fragments form the basic frames of the two-resolvent method. 

As a consequence of the above discussion, we can summarize our 
procedure for building up the collision s.operator as follows: 

1. Draw an o.s. diagonal skeleton fragment. 
2. Transfer successively the outermost potential originally on one side 

of the A line to the opposite outermost side until the opposite o.s. 
fragment is obtained. 

3. Put the bubbles and/or the inactivated diagonal fragments onto each 
propagator in the skeleton fragments obtained in steps 1 and 2. 

Then, we can obtain the diagrams for which we are looking. 
We mention another use of the compensative relation; it concerns the 

concept of the connectedness in the diagram and leads to the restriction of 
the number of diagrams which we must treat. That is, if we are interested in 
the reduced properties of the system, it is enough to treat only the "connected 
diagram" containing the fixed particle, where by connected diagram we 
mean that the diagram consists of subgroups having a particle in common 
(see Fig. 12). This theorem can be proved by the aid of the convolution 
technique introduced by Hugenholtz. (15~ To avoid digressing from our subject, 
we give the details in Appendix C. 
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Fig. 12. Examples of" disconnected" diagrams consisting of two "connected" subgroups. 

4. Q U A N T U M  STATISTICAL EFFECT A N D  CONTRACTION 

4.1. Contraction 

We now show how the quantum statistical effect is treated in our 
formalism. We consider a simple example of a correlation component 
Pk~,kj(P*, PAP N-2) with k, + kj r 0. From (2.25) the relation 

Pk,,kj(Pi, PJIP N- 2) 
~N+2 s( h h h h \ 

+ ~ k~, pj + ~ ks, pN-2; p~ - ~ k~, pj - ~ k j, pN-Z[p ) 
(4.1) 

holds and it seems that this is an off-diagonal Fourier component having two 
nonzero wave vectors k~ and kj. However, due to the symmetric (or anti- 
symmetric) property of the momentum state, if p~ + (hkJ2) = pj - (hkj2), 
then (4.1) reduces to a lower component having a single wave vector k~ + ks 
as 

Of~8 X p~ + ~ k ~ - - p s +  ~kJ Pk,+kj P~+ ~ki]Pj--  ~kj ,  pN-2 (4.2) 

where the statistical factor 0 comes from the interchange of the roles of the 
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particles i a n d j  on the left-hand state in (4.1), and (2.25) is again used. Since 
the factor ~S ~: in (4.2) exactly coincides with the S-function in the T-limit, 
this S-singular term cannot be neglected as compared with the nonsingular 
term in (4.1) for large quantum systems. This reduction is just the quantum 
statistical effect that originates from the symmetric property of the particles 
and is called a "contraction." (4.1~) 

Except for the components po(Ip N) and pkj(pjlp~-l), contractions occur 
in any Fourier components and these contractions are performed as follows: 
First, the contraction between any two particles having nonzero wave vectors 
in pkr is performed by the following contraction formulas: 

(i) F o r k ~ + k j r  0 

ek,,kj,k~_2(p~ ' p j ,  p r -  2 [pN-~) 

= pk,,kj,kr_~(p~ ' pj, p~-~[pN-~) 

+ Of~3 K p ~ + ~ k ~ - p j + ~ k j  

( ~kj,h p~ - 2 pj ~kj,h pN - ~) • pk~+k,,k'-~\p~ + 

+ ORS x p ~ - y 2 k ~ - p j + ~ k j  

( h.  ~-2 p~ _ h pU_~) (4.3a) )< pl,~+l~j,kr-2\pj + ~a~,p ~k~, 

(ii) For k~ + ky = 0 

pk~,-~,~,kr-~(P~, Pj, P~-21PN-r) 
= p~, _k.k._2(p~ ' py, p~-2]pN-~) 

+ 0~2 S:<(p~- p~)pkr-2(p"-2 p, h h ) f - ~k~, pj + ~k~, pU-r (4.3b) 

Here, the primes on the par indicate that their singular parts at p~ + (hkJ2) = 
Ps g (hkj/2) are removed. We apply these formulas successively to the 
remaining particles having nonzero wave vectors until all contractible parts 
are separated. Then, we can find the component pk r expressed in terms of 
nonsingular components #k~ (S ~< r), which are defined as components no 
longer having a contractible part in pkg. 

In order to perform this contracting procedure systematically, we develop 
our diagrammatic method as follows: We draw the contracted part of  the 
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second term in (4.3a) as shown in Fig. 13a, where particle lines other than i 
and j are not drawn. The arrow indicates the contraction between i and j, 
and is called the "contracting arrow." The particle lines outside the contract- 
ing arrow represent the state of the original component (4.1). The particle 
lines inside the arrow represent the state obtained by interchanging the roles 
of the particles. The orientation of the arrow is away from the particle that is 
diagonalized by the contraction in the density s.state. The arguments on the 
particle lines are put in as the total momentum is conserved. The argument 
in the Kronecker symbol is given by the difference between the momenta on 
the two particle lines on either side of the contracting arrow. In a similar 
way, the third term in (4.3a) is represented by Fig. 13b, and the second term 
in (4.3b) by Fig. 13c or 13d. 

Here, we note that the contracting arrow is regarded as a kind of inter- 
change operator Q;j which interchanges the roles of the particles i and./' and 
has an orientation toward i from j, wherej is the particle diagonalized by the 
contraction. For the case including more than two particles, their contraction 
is performed by iterative application of (4.3), which is represented by a set of 
contracting arrows arranged in accordance with the order of the successive 
contractions. However, in the representation of the contraction, there exists 
an ambiguity in the order of the successive contracting arrows. This originates 
from the fact that, in order to symmetrize a state, there is an ambiguity in 
expressing a permutation by the combination of interchange operators. We 
show this by the example in Fig. 14, where the diagrams correspond to the 
following combinations of interchange operators: Q'12Q'~aQ'~4 = QI~Q'84Q'~3 
. . . . .  Q;~ Q~3 Qi~. These represent the same permutation, replacing the order 
(Pl, P2, P3, P~) by (P2, P3, P4, Pl). In order to avoid double counting of the 
contraction, we must take account of only one of these. 

We further remark that, for the contracted part corresponding to (4.2), 
another diagrammatic representation is possible, as shown in Fig. 15. Here 
the role of the particles is interchanged on the right side of the A line. For the 
moment, however, our attention is devoted only to the contraction performed 
on the left side of the A line, since after it is investigated, the properties of the 
right side can be easily obtained through the compensative relation. This type 

Fig. 15. Another expression for the contraction in Fig. 
13a. 

r,. ~ ;  ~ 5 ~  i ~-~; 

| 1  

m I I  I . . . .  I 
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of contraction will be used when necessary, and the details of how to take it 
will be given in Section 5. 

4.2. M o v e m e n t  of  a Cont rac t ion  

We now discuss the role of the contraction in the perturbation series 
(2.33). In (2.33) it seems that all quantum statistical effects have been crowded 
into the initial Fourier component Ok,~(p'NIp'N-~; 0). However, as was men- 
tioned in Section 2, if an intermediate state is fixed under the condition of a 
diagonal transition, the quantum statistical effect must appear through this 
intermediate state. Therefore, in the treatment of the asymptotic time 
evolution of this system, a method has to be devised for taking account of 
this effect in our perturbation formalism. 

For this purpose, we first note that some of the contractions performed 
at the initial component also can be regarded as being performed at a time 
other than t = 0. To illustrate this, let us consider the example in Fig. 16, 
where the contraction is performed in the initial component, Ok~-,,k~+, 
(p~ + �89 P2 + �89 - hq, pN-3; 0). The corresponding contribution is 

p ~ , k ~ ( p l ,  P~IPa, p N - a ;  t ) b ,  ~ 

(-TL L = ~ dz . dz' e - ~ ( z - ~ ' ) t / ~ A 2 ~  - I  

1 
v(q) X 

E p l  + ~lt2~k,, p~ + ~1/2>~k~,~ - z 

1 

E p z  + / ~ [ ( 1 1 2 ) k l  + k 2 + q ] , D 2  - ( l / 2 ) / ~ k s , P 8  - h q  - -  Z 

1 

Epl_/~[(ll2)kl-q],P2-(l/2)~k2,Pz-~-q - -  Zj ,  v ( q )  

1 
X 

Epl _ (ll2)i~kl,p2 _ (ll 2)Rk2,p 3 -- Z t 

x 0 ~ Z ( p l + h  h ) k l  - P2 + ~ k2 

p k l + k 2 ( p l + h ( q + 2 k 2 )  p 2 - h k 2 , p 3 - h q ; 0 ) ( 4 . 4 )  

In this example, the contraction is performed in the initial component by 



Theory of Irreversible Processes in Nonequilibrium Quantum Systems, I 375 

. . . .  

Fig. 16. Diagram corresponding to (4.4). 

setting the momenta Pl + (hkz/2) = P2 - (hk2/2) irrespective of the potential 
v(q). Then, if (4.4) is rewritten in the form 

Pk~,k~(P;, P~,IP3, pN-3; t)la ~ 

"~ qz - P2 + ~ k2 ~ 7  dz , dz' 

q EDI+h[(II2)kl +kg],p2-(1/2)t~k2,D3 
- -  g v(q) 

E p l  + / ~ [ ( 1 / 2 ) k l  + k 2  + q l ] , P 2  - ( $ / 2 ) / ~ k 2 , P 8  - h q  - -  Z 

1 
x E p  1 _ nt~lt2)k~ - ~ o , p ~  - ( 1 / 2 ) n J , 2 , p 3  - ~,~ - z '  v ( q )  

X 
Epl-(1/2)~kl ,P2-(1/2)~k2,D3 - Z t  

h (q + l k2) p~ h k  - 0) (4.5) x Pkl+k2(Pl + ~ ~ - ~ 2,P3 hq; 

this term can be represented as the diagram in Fig. 17. This shows that the 
right-hand side of (4.5) is identified with the contracted part 0f2 3K(pl + 
lhk l  - P2 + �89 + �89 - �89 P3, pN-3; t) of the left-hand 

�9 , �9 , �9 �9 ~ �9 ~ ,, 

Fig. 17. Diagram corresponding to (4.5). Completely movable contraction. 
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side of(4.6) at time t, and then the contraction can be regarded as having been 
moved over the potentials. In this movement the role of the particles is inter- 
changed in sliding the contracting arrow from inside to outside the potential, 
since the contacting arrow plays the role of an interchange operator. 

For the examples shown in Fig. 18, the contractions are performed in 
the destruction part in (1 a) and in the propagation-of-correlations part in (2a). 
In (la), since the momenta Pl + hql + hq2 and P2 relating to the contraction 
are irrespective of the potential v(q3), we can rewrite the expression for (la) 
in a similar way to (4.5) and get the expression represented by the diagram in 
(lb). Then, through this contraction, we find that the destruction part in (la) 
reduces to two parts, a diagonal fragment and a destruction part. In a similar 
way, we can also rewrite the diagram (2a) to (2b). However, this con- 
traction cannot be regarded as being performed in the final component 
Pkl.k3(P~, P31P2, pn-8; t), because this component has no contractible part 
between the momenta pz + (hkl/2) and P2. In this case, the propagation-of- 
correlations part in (2a) does not reduce to any other type of fragment through 
the contraction. 

As shown in these examples, we can classify the movement of a contrac- 
tion into the following three types: (1) a "completely movable contraction," 
which is defined as one that can be regarded as being performed in the final 
component after the complete movement over all potentials, such as in Fig. 
17; (2) a "movable contraction," which is defined as one that yields a diagonal 
s.state through the reduction of the fragment into several types of fragments, 
such as in Fig. 18(1); and (3) a "slideable contraction," which is defined as 
one through which the fragment does not reduce to any type of fragment, 
such as in Fig. 18(2). As will be discussed in the next section, this contraction 
can move freely over the potential within a fragment. The location of the 
slideable contraction will be determined so as to be convenient for our 
applications. 

Finally, we refer to the role of the contraction in the asymptotic time 
dependence of the perturbation series (2.33). For instance, diagram (la) in 
Fig. 18 seems to be constructed only from the destruction part, and it has no 
asymptotic contribution growing with time. However, as is shown in Fig. 
18(lb), the reduction yields a diagonal fragment proportional to t, Due to 
such implicit diagonal transitions due to the quantum statistical effect, the 
estimation of the time dependence of the perturbation series (2.33) is much 
more complicated compared with that for the system of distinguishable 
particles. This complexity, however, can be removed if we reconstruct the 
perturbation solution (2.33) for pkr into one for the nonsingular Fourier 
component #k', since from the definition of #k' all reducible parts are removed 
from it by the contraction. We will discuss such a solution for pc in the 
following section. 
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5. SOLUT ION FOR #k,(t) A N D  ITS A P P L I C A T I O N S  

5.1. Solut ion for  #k,(t) 
t 

We give a systematic method for reconstructing the solution for pkr(t) 
from the perturbation series (2.33). 

This recoristruction can be achieved by the use of our diagrammatic 
method as follows: First, we perform the contractions at the initial Fourier 
component in the perturbation series (2.33), and let all movable and com- 
pletely movable contractions move over the potentials as far to the outside 
as possible. By comparing this result with the terms on the left-hand side of 
(2.33) in which the contractions are performed at time t, we find a set of 
solutions for #kr(t) in which all diagonal fragments are explicitly separated. 

We notice that in these solutions all slideable contractions can be moved 
freely within each fragment, since they give no reduction of the fragments 
and thus they merely play the role of interchanging operators. It is con- 
venient to classify these slideable contractions into two groups: "external 
degenerating contractions" (called external contractions), which connect with 
the completely vacuum line, such as in Fig. 18(2b); and "internal degenerating 
contractions" (called internal contractions), which never connect with the 
completely vacuum line wherever the arrow is located within the fragment, 
such as in Fig. 19. 

An external contraction indicates a degenerating effect between a particle 
in the collision and a particle in the background of this collision, which 
behaves as the Fermi sea of the Pauli exclusion principle for fermion case. 
This contraction can be easily included in our diagrams by merely putting 
arrows on the unsymmetrized diagram given in the previous section. 

An internal contraction indicates a degenerating effect between the 
particles in a collision, such as an exchange collision. This contraction can be 
further classified into two groups, a contraction for a bubble and a contraction 
for a skeleton. The former is defined as one that is associated with a bubble, 
such as in Fig. 19, and the latter as one that never yields a bubble by its 
movement within the fragment. 

With the aid of these classifications and of the compensative relation, we 
can build up the quantum statistical collision s.operator on the same basis 

/ / 
- [ 

- I 

Fig. 19. Example of an internal contraction. 
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as in the unsymmetrized case, i.e., using the skeleton fragment, the bubble, 
and the inactivated diagonal fragment. For example, starting with diagram 
(a) in Fig. 20, we can obtain all compensative diagrams in Fig. 20 by the rule 
of compensation. To get diagram (e) from (d) we use the fact that the 
diagrams in Fig. 21 give the same contribution. Furthermore, the diagrams 
in Fig. 20 can be decomposed into the o.p. representation. For example, the 
diagrams proportional to 1-2 are shown in Fig. 22, where we have slid the 
contractions for a bubble and for a skeleton to the outside on the right 
diagonal fragment so as to get the same topological structure as the left 
diagonal fragment. 

5.2. Extension for a Linearized Hydrodynamic System 

We now extend our formalism to an inhomogeneous system in which the 
characteristic lengths of the system satisfy the inequalities 

Lh >> Lr >> a, Lh >> ~B (5.1) 

where Ln is the hydrodynamic length, Lr is the mean free path, a is the 
molecular length, and 1B is the de Broglie wavelength. We further restrict 
the system so that the deviation of the local density from the average density 
c is very small [see (5.7)]. This assumption implies that it is sufficient for us to 
make a theory linear in this deviation. 

For such a linearized hydrodynamic system, we need to extend the con- 
cept of the vacuum component, such that it consists of the Fourier component 
pk(plp ~-1) having a single nonzero wave vector. This new vacuum state is 
indicated by a single excited line in our diagrammatic method, where all the 
previous concepts of creation part, diagonal fragment, destruction part, and 
so on remain, changing only the meaning of the vacuum component. Some 
typical diagonal fragments for this system are shown in Fig. 25. 

5.3. Derivation of the Asymptot ic  Kinetic Equation 

Following our diagrammatic method, we consider two simple examples. 

Homogeneous system: Let us first derive the kinetic equation for the 
single-particle momentum distribution function in a weakly coupled system 
in the limit 

A ~ 0, t ~ oo, ~2t = const. (5.2) 

For this case, the o.s. diagonal skeleton fragment is given as shown in Fig. 
23, and thus the summation of all possible diagrams contributing to the 
N-particle momentum distribution function ~bN(p N, t) = po([pN; t) = p0([pN; t) 
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4N(p N, t) = ~ dE dle -izt/~ 
- o o  

N 

• I--I ~(p~,  o) 
N=O 

where 

x~,~(l) = v(q) + Ov 7 - -~ 

is given in the o.p. representation shown in Fig. 24. The corresponding 
expression for the diagram in Fig. 24 is 

n = 0  

(5.3) 

x I[ 1§ r=l  411+0 
x exp[hq(e/ep~- e/apj)] 

- [1 +Or~lS~:(P~+hq-p,)][1 + O~=lSr:(Pj-hq-ps)]) 

(5.4) 

(o) = 1 1 (5.5) 
GN,E(t) G N - E - { I  G N - E + { t  

and the displacement operator exp(hq ~/~p) F(p) = F(p + hq) is used. Then, 
evaluating the contribution around the poles l = 0 in (5.3), integrating over 
the momenta except for Pl of the fixed particle, and taking the time derivative, 
we get the well-known equation for the limit (5.2) as 

Ot4~(Pl, t) = (2~')ac;~2 h f dpzf dqv(q)[v(q)+ Ov([~-Pl2 

x 2~-8(Ep~+nq + Ep2_~q - Ep~ - Ep~) 

x {4dp~ + ~q, t)4dp~ - hq, 011 + Oh~c4dp~, t)] 

x [1 + 0h3c4~@2, t)] 
- 4dp~, t)41(p~, t)[1 + Oh~c4dp~ + ~q, t)] 

x [1 + OhScckz(p2 - hq, t)]} (5.6) 

Linearized hydrodynamic system: As a second example, we consider a 
weakly coupled inhomogeneous system under the condition (5.2). Our interest 
is now in the derivation of the linearized Boltzmann equation for the reduced 
function p[l>(p~, t), which is the Fourier component of the deviation of the 
local density from the average density c, i.e., 

p[l)(p~, t) = ~ f dxl [exp(- ikxl ) ] [ f l (x l ,  Pl, t) - c~l(pl, t)] (5.7) ~..~) c J 
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To derive this equation under the condition (5.1), we first notice that the 
typical wave vector k (~ 1/L~) is much smaller than the momentum transfer 
of the potential hq (,,~ h/a) and the momentum p (~ h/k~). For this system, the 
diagonal fragments, which reduce to the diagrams in Fig. 24 by setting k = 0, 
may give the main contribution to p~(pz[p~-~;t). Such diagonal fragments 
can be obtained by replacing one of the vacuum lines in Fig. 24 by an excited 
line. The results are shown in Fig. 25, where the left fragment and the t.s. 
diagonal fragment are drawn. The corresponding expression for diagram (a) 
in Fig. 25 is 

= ( t ' T~i l j_ o~ d E  ri le - " ~  [ - c ( ~ , ~ , d l ) J  _ I -  (h[m)kp~ l -  (h/m)kpl 

[ 1 ] 
• Epl+(1/2)ek,~N-1 -- E - �89 - E p l + ( l / 2 ) / ~ k , p  ~ - z  - -  E + �89 

1 1 G(S) (I'~ 
+ I - ( h / m ) k p l  E p l + ~ l / ~ k , ~ N - 1  - -  E - �89 pl ,k,E~' ,  

' t • Ep~+<l~2~,~k.p~,-~ -- E -  �89 Pk(Pl]PN-2; 0) (5.8) 

where 

1 G~),k,E(l) = k2f2-2 ~ ~ v(q) 

~=~ ~ k  + hq - p~ 

• 1 + 0 3~r - hq - p~) 
8 = 1  

• [ v ( q ) + O v ( l ~  P~ 1 [)]  - ~ + ~ k  + q (5.9) 

Under the assumptions of (5.1), we may approximate p~ + (hk/2) ~ Pz in 
(5.8) and may expand [l - (hkpz/m)] -1 as 

1 -  (h/m)kp~ = l" .s__~ (5.10) 

Then, evaluating the contributions from the poles at I = 0 under the condition 
(5.2), we get 

k p l \ j _ ~ _ l / _ i k 2 t \  - _~. - . 
1 j~l - i t  m ) t ~ )  [-Gp:'~ 

J=l ~ , = 0  
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Similar terms are obtained for the diagrams in Figs. 25b-25h and also for 
the right diagonal fragments. Furthermore, diagrams consisting of more than 
one diagonal fragment are evaluated in a similar way. Then we get the solution 
for Pk(P~lPN-1; t). Then integrating over the momenta except for p~ of the 
fixed particle and taking the time derivative, we obtain the linearized 
Boltzmann equation for p(k~)(pl, t): 

~tp~l'(p~) + i ~  -~ O(k~)(pl) 

• 2,,  ~ (E .~+ , ,  + E . ~ _ , .  - E.~ - E,~) 

• ({4~(p2 - h q ) [ 1  + Ohacr + Oh~c4~(pd] 

- Ohac[1 + Oh%c~(p~ - hq)]r + hq) 

- ( ~ 1 ( p 2 ) [ 1  

- Oh3c[1 + 

+ {r + 

- Oh3c[ l  + 

- { ~ 1 ( p l ) [ 1  

+ O h a c ~ l ( p 2 -  hq)][1 + Oh3cO~(p~ + hq)] 

Oh3c~l(p2)]q51(p2 - hq)~bl(pl + hq)}p(kl)(p~) 

ha)[1 + Ohac41(pl)][t + Ohacc~l(p2)] 

Ohac(olfp~ + hq)]r -- hq) 

+ Oh3c~l(p + ]~q)][l + Ohacg~(p2 - hq)] 

- Ohac[1 + Ohac(~l(pl)]r + hq)r - hq))p(k~)(p2)) (5.12) 

where all functions p(k 1) and q~z are at time t. By putting 0 = - 1  for the 
fermion case, this equation coincides with the equation derived by R6sibois 
and Dagonnier. (16) 

6. C O N C L U S I O N  

We have formulated the perturbation theory of the two-resolvent method 
in a superspace and given a diagrammatic method so that a description parallel 
to the one-resolvent method is possible with the use of the concepts of the 
creation part, the diagonal part with collision s.operators, the destruction 
part, and the propagation-of-correlations part. Our method offers practical 
applications to physical systems and improves the usefulness of the two- 
resolvent method for large quantum systems. We have further developed our 
diagrammatic method so as to be able to treat the quantum statistical effect 
through the concept of a moving contraction. For a quantum statistical 
system, it has been shown how the contracting procedure given here is much 
simpler than that of our previous work (14) with the one-resolvent method, 
and this simplicity enables us to treat the complicated quantum statistical 
effect more easily. 
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Finally, we comment on the relation of the extension of our theory to a 
more general hydrodynamic system without the linearizing condition, to the 
recent developments of the one-resolvent method. For such a system, Severne ~6) 
developed the one-resolvent method based on the cluster decomposition of 
the correlation function, and an extension of this theory to the quantum 
statistical system has been attempted by Balescu (1~ based on the correlation 
pattern. In order to develop our theory in this direction, we have to extend 
the concept of the vacuum component, which is now defined by the Fourier 
component p~,r having wave vectors smaller than the inverse of the hydro- 
dynamic length L~. This definition implies that the vacuum component for 
the hydrodynamic system can be factorized as 

Pk~(prIpN-O = 1-~ ~ P~'(Pi)~I(Pj) (6.1) 
~ = l t = r + l  

with [k~[ ~< L ;  1 for i = 1 .... , r. For such a case, the quasidiagonal s.state, which 
is defined as an off-diagonal s.state with small gaps of momenta of the order 
ofhL~ 1, plays a central role similar to the diagonal s.state in the homogeneous 
system. Consequently, the quantum statistical effect also appears through this 
quasidiagonal s.state. Then, an extension of the contraction is required so as 
to take account of the effect of the reduction of the Fourier component having 
large wave vectors into one having small wave vectors by interchanging the 
role of particles in the density s.state. This is achieved by collecting the terms 

~ '  03 K h k j - h k ' + p t + ~ k t - p j + ~ k j  

h h , ,  r 2, N-~ 
x Pk,+k',k,-w P, + ~ k', pj - ~ K, p - IP J (6.2) 

from the first term p~,, of the contraction formulas (4.3). 5 In (6.2), the prime 
on the summation sign indicates the exclusion of k' = 0. We call this new 
reduction "quasicontraction." In our diagrammatic method, the quasi- 
contraction (6.2) is represented as shown in Fig. 26, where particle lines 
other than i and j are not drawn. A typical one-sided "quasidiagonal frag- 
ment"  is shown in Fig. 27. 

5 We can show that the summation of the contracted parts in (4.3) with (6.2) is the same 
as the term obtained from Balescu's symmetrization operator P2(i; j) acting on ~r2(i; j) 
in Ref. 10. 

I Pi, i; tt,'  ,I, 
l -- ~ k  ; 

Fig. 26. Diagram corresponding to (6.2). 
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! 

PI + ~ k ,  
l 

I ~ .  I o I ~*ik ,+t  ~ai I , P, + ~ , , " i  .d~, i ' ' ~ -  5" k, ~§ k,*l§ +~, Pl+ik, *t~, 

I 

Fig. 27. Typical one-sided quasidiagonal fragment in the hydrodynamic system. 

Under such an extension, we may expand our two-resolvent method 
into a formalism including nonlinear hydrodynamic systems. The details of  
this formalism will be given subsequently in this series. 

APPENDIX A 

In the appendix, we give the reduction formulas for exposing all the 
poles at l = 0 in a diagonal s.state. We first introduce a "diagonal s.state 
funct ion" (d.s. function) ~F by 

t F ( a o ,  s~ .... , am; So', s l ' , . . . ,  ~,  IZ, Z') 

1 1 1 
- - -  G ( z )  G ( z )  

a 0 - -  Z ~ z  - -  Z a m - 1  - -  Z 

1 1 
• - z ' G ' ( z ' )  , - z '  G , ( z ' )  

1 
- -  G r a ( Z  ) - -  

S r a  - -  Z 

1 1 
- z '  G l , ( z ' )  - z '  (A1)  0~1 t Cg0 t 

where ai = aj' = a for all i and j ,  and the abbreviations a, for E~ and G 
for G~, are used. The tetradic element (a; a[D>(z)D<(z ' ) la ;  ~) in (3.2) can be 
expressed by the summation of the d.s. functions over all m and n. The d.s. 
function obeys the following reduction formulas: 

't '(ao .. . .  , sin; ao' , . . . ,  a , ' l z ,  z ' )  

1 ! r 
- z z'  [Gl ,~ ' (ao , . . . ,  am; c~1 ..... s ,  [Z, Z') 

-- -- aoo 

+ ( -  G1)~(c~l ..... %; %', .... c~,'lz , z')] (A2) 

~' (ao  .. . .  , am; ao' , . . . ,  s~'lZ, Z') 

= Pr (~o  . . . . .  ~m; ao' , . . . ,  ~ ; ~ - d z ,  z ' ) G ,  
1 

+ W(ao .... , Sm-~; So', .... a,'lZ, Z')(--Gin)] z z' (A3) 
- -  - -  a ~ r  t 
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where cqj ~ cq - a/ .  By iterating (A2), we get 

W'(ao .... , ~,,; ~o', .... a~ ' lz ,  z ' )  

1 1 _ . r t 

z z '  G I '  z '  [Go'~'(~o,. . . ,  am, ~ ,..., a ,  [z, z ' )  
-- -- (~00 Z -- -- a01 

+ ( - G 1 ) ' I ' ( a l  ..... a~ ;  a l ' , . . . ,  ~ , ' l z ,  z ' ) ]  

1 1 
+ z z' ( - G 1 )  z' " [Gl,W(al .... , a m ;  a l '  , . . . .  a m ' [ Z  , Z') 

- -  -- a o o  Z - -  -- alo 

+ (-G2)~F(a2 .... , am; ao', .... a, 'lz, z')] (A4) 

By iterating this formula until all possible factors ( z -  z ' - a ~ j )  -~ are 
exposed, we get the decomposition of the d.s. function as the summation of 
(m + n)! /(m! n !) terms, each of them having the factor 

1 1 1 1 
- -  G~+~ ~ G~+2 - -  Gm - -  (0 <. r ~ m) (A5a) 
a r - -  g a r + l  - -  a m - 1  - -  Z O: m - -  Z 

o r  

1 1 
a s - -  Z' Gs' +1 as+ 1 '  - -  Z' Gs" +2 

1 1 
' - z ' G " '  , z'  ( 0 ~ < s ~ < n )  

i f ' n -  i a n  - -  

(A5b) 

on the right side and having the remaining diagonal fragments -G~ and Gj 
with the factor (z - z' - a~j)-1. In the product of these remaining factors, 
there appear all terms corresponding to those permutations among the 
diagonal fragments - G~ and G / t h a t  are on opposite sides of the A line (no 
permutations among the fragments on the same side of the A line appear, 
since there already is order among them). Then, if each fragment of a 
diagram is arranged in accordance with the order of this decomposition, the 
ordered product representation is obtained. 

Furthermore, if (A3) is used instead of (A2), a similar decomposition is 
obtained, but in this case, one of the two factors similar to (A5) is located on 
the left side in each term. Then this new decomposition leads to another 
ordered product representation such as in Fig. 7. 

A P P E N D I X  B. Der ivat ion of (3.29)  

By evaluating the poles at l = 0 in (3.24), we have 

pO,E([pN; t) = ~ 7  ~m~=o-~. + 8z Xem(l)AE(l)po(lp'z~;O)[~=+~o (B1) 

where 8l = 8/8l and the bra and ket notations have been abbreviated and the 
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destruction part has been omitted for simplicity (this part leads to no new 
aspect in the resultant equation). Differentiating (Bl) with respect to t, we get 

ih ~pO,E(IpN; t) 

= 1"-~ ~ L  ~ m-rE 1 (.-~it_) r 
2rri 3=0 r! s! (m r - s)! , = r = 0  = 

x [8~sxE(l)][8~-~-'xBm(l) A~(l)]Po(lP '~; 0) lz = + to (U2) 

On the other hand, from (3.28) we have 

2rr f f  +iz,/~X ,(~.) xz(l) = -~  dr (B3) 

and thus 

2rr for176 [ir 'V ,, [a,~xE(l)]l= +m = -h- d~- ~ ]  xE ~r) (B4) 

Substituting (B4) into (B2), we have 

ih a,eo. (Ip ; t) 

ir ~ 8=_~_ s = I A ,N. +m 

err dr XE'(r) ~-~ ~ .  (t r) + 8z 
0 D,N ~ = 0  

• x [ " ( l )&( l )po ( Ip 'N ;  0)1,= +,o 

Then, 
asymptotic master equation, 

ih atPo,~(lpN; t) = dr ~. X~ (r)po,~(lP" , t - r) (B6) 
D'N 

(B5) 

substituting (B1) into the right-hand side of (B5), we arrive at the 

A P P E N D I X  C 

We show here that if the reduced properties of  the system are of interest, 
it is enough to treat only the connected diagram containing the fixed particle. 
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To illustrate this, we consider the example of the single momentum distribu- 
tion function defined in (2.23), i.e., 

d~l(pl, t )  = ( h a i l - l )  u - ~  ~ ~ ,  dz  d z '  e -~("-~''t/n 
D'N- i p,N �9 

N 

• (P~; PN[~R>(z)R<(Z')~lP'N; P'u) ]--I ~I(P", 0) (C1) 
i = 1  

where it is assumed for simplicity that only the vacuum component Po does 
not vanish at the initial time t = 0. The summation ~.pN-z in (C1) is taken 
over the momenta of the particles, except for the fixed particle 1. Each 
diagram contributing to (C1) consists in general of several subgroups con- 
nected partially through their interactions. The subgroup containing the fixed 
particle is called the "fixed subgroup," and the others the "unfixed sub- 
groups" (see Fig. 12), 

As has been discussed by Hugenholtz, (tS) the summation of all possible 
diagram obtained by ordering a set of disconnected subgroups can be ex- 
pressed in a simple form as a convolution integral..For example, the summa- 
tion of the left sides of the A lines in diagrams (a) and (b) in Fig. 12 can be 
expressed as 

1 1 1 
Ep~-------Z~z v (q )  E m  +. . , .~_~q. .~_ ~ _ z v (q ' )  Epz +. . , . ,_ .q ,p .+n. . . v ._ .q . .p~_  4 _ z 

1 1 
+ E . ~ - z  v(q') E . .+ . . . . _ . . , , . . - 2  - z 

1 
x v ( q ) E m + . . , . , _ . q . p . + . . , . , , . _ . . , , , , . _ ~ _  z 

1 1 1 
= Ev. ,p , - z  v (q )  Era+. . , , , , _ . ,  l - z ~ E . . - .  - z 

1 
(C2) x v(q')E~,+~,r,~,-~,. '~-4- z 

where the symbol o indicates the convolution integral, 

-lfo f ( z )  o g ( z )  = ~ d ~ f ( z  - ~)g(~) (C3) 

and the path of integration C is a contour encircling all singular points of the 
integrand on the real axis, but not encircling the singular points located on 
the straight line through z parallel to the real axis. 
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This theorem can be extended to the product of two resolvents 
R > ( z ) R < ( z  ') depending on the two complex variables z and z' .  Then, the 
summation of the diagrams (a)-(d) in Fig. 12 is simply expressed by 

1 1 1 1 
E,I,, , - z v (q )  Ep~+~q,p,_~q - z Eo~ +~q,p,-nq - z '  v (q )  Ev~,p, - z '  

1 1 1 
o EpN-2 -- z v (q ' )  E,r+n,r ,p_nq,~,N_,  _ z Evr+~q,,p_~q,a,N-,  -- z '  

1 
v (q ' )  EpN-2 -- z '  (C4) 

where the symbol ,  indicates the product of the convolution integrals on z 
and z', 

f ( z ) f ' ( z ' )  o g ( z )g ' ( z ' )  = [f(z) o g ( z ) ] [ f ' ( z ' ) o  g'(z')] (C5) 

With the aid of this theorem, we can decompose the product of the two 
resolvents in (C1) into a convolution integral consisting of the fixed subgroup 
(f)  and unfixed subgroups (uf) as 

~ R  > ( z ) R  < ( z ' ) ~  = [g~R > ( z ) R  < (z')~], o [~R > ( z ) R "  (z')~],f (C6) 

The evolution s.operator ~(t), which is the Laplace transform of the product 
of the two resolvents, is therefore decomposed into a product of evolution 
s.operators for the fixed subgroup and the unfixed subgroups. Then we get 

N '  

r  t )  = ( b a n - l )  N ' - I  ~_, ~ ,  (pN'; pN'l[r ; p,N')l--Ir 0) 
pN'-- 1 p , N '  

N ~ 

x (ban-l) N" ~ ~,~ (p~"; pU"l[~'(t)l~lp'N"; p'N")~[r , O) (C7) 
DN" , " j 

where N'  is the number of particles in the fixed subgroup and N" is the number 
in the unfixed subgroups; N = N' + N". The second factor in (C7) has the 
same form as (3.30) in the limit N " - - +  oo. Therefore, all diagrams having 
potentials cancel through the compensative relation of the diagrams, and 
only the noninteracting term gives a contribution as unity. Thus, we arrive 
at the final result, 

N" 

,/,z(pz, t) = (haa-~) N'-~ ~ ~ (pN'; pN'[[q/(t)]flp,N' ; p,N')I- ~ r 0) (C8) 
p N ' -  1 D'N" I~ 

where all diagrams on the right-hand side comprise the fixed subgroup. This 
can be directly extended to more general cases and hence the statement is 
proved. 
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